ANSYS在国家体育场设计中的应用
1 引言
2 结构分析
2.1 计算程序的选择

2.2 结构分析的主要内容
| 表1  结构的周期与频率 | |||||
| 序号 | 频率(HZ) | 周期(s) | 序号 | 频率(HZ) | 周期(s) | 
| 1 | 0.7410 | 1.34953 | 16 | 1.2876 | 0.77664 | 
| 2 | 0.74119 | 1.34918 | 17 | 1.3886 | 0.72015 | 
| 3 | 0.74815 | 1.33663 | 18 | 1.3893 | 0.71979 | 
| 4 | 0.74948 | 1.33426 | 19 | 1.5137 | 0.66063 | 
| 5 | 0.77800 | 1.28535 | 20 | 1.5151 | 0.66002 | 
| 6 | 0.88401 | 1.13121 | 21 | 1.5435 | 0.64788 | 
| 7 | 0.88668 | 1.1278 | 22 | 1.5543 | 0.64338 | 
| 8 | 0.94100 | 1.0627 | 23 | 1.6024 | 0.62406 | 
| 9 | 0.94378 | 1.05957 | 24 | 1.6027 | 0.62395 | 
| 10 | 0.97805 | 1.02244 | 25 | 1.6144 | 0.61943 | 
| 11 | 0.98842 | 1.01172 | 26 | 1.7748 | 0.56344 | 
| 12 | 1.06030 | 0.94313 | 27 | 1.7780 | 0.56243 | 
| 13 | 1.06160 | 0.94197 | 28 | 1.8070 | 0.55340 | 
| 14 | 1.18530 | 0.84367 | 29 | 1.8155 | 0.55081 | 
| 15 | 1.28690 | 0.77706 | 30 | 1.8162 | 0.55060 | 
#p#page_title#e#
2.2.4 加肋构件的有限元分析
在“鸟巢”结构的固定屋盖中,主结构、次结构及组合柱均采用焊接箱形截面,杆件之间均采用焊接连接。为了满足建筑造型要求,构件外形尺寸受到较大限制。主桁架弦杆宽度均为1200mm,高度为800mm~1200mm,次结构构件的宽度均为1200mm,在屋面处的高度为800~1000mm,立面处的高度为1200mm。
国家体育场“鸟巢”结构造型特殊、屋盖结构跨度巨大,钢结构自重在构件内力中所占比重很大。由于钢结构直接暴露于室外,温度变化将在结构中引起很大的内力和变形。对于这种特殊的结构体系来说,保证结构在罕遇地震作用时的安全性至关重要。因此,减少用钢量不但对节约投资、控制造价有直接的益处,同时对于减小地震与温度作用、增强结构的安全性也具有十分重大的意义。
在国家体育场设计过程中,为了减轻结构的自重,对于受力较小的次结构构件,有两种设计方案,一种是采用格构式构件加外覆装饰性薄钢板的做法。另外一种是考虑在箱型截面构件内部采用设置横向和纵向加劲肋的办法。因此设计人员专门研究了加肋构件和非加肋构件的承载力。以Q345钢材的焊接箱形构件□1000×1200×8×8为例,构件计算长度取=20.0m,研究了不加肋、加一道纵肋和两道纵肋时构件的承载力,如图3所示。研究结果表明,设置加劲肋对于延迟薄壁箱形构件发生局部屈曲、提高构件承载力、减小用钢量具有很大的作用。设置加劲肋后,薄壁箱形构件的实际轴压比提高,虽然在达到极限承载力后还可以维持一定的承载力,但延性有所减弱。图4为箱形薄壁构件屈曲时塑性区发展情况。



2.2.5 复杂节点的有限元分析
由于国家体育场的体型十分复杂,模型中很多部位出现大量杆件汇交的情况,这时必须对节点进行有限元分析才能判断节点构造的有效性。为此设计人员专门制定了节点有限元设计的技术条件。节点分析的一般流程为:

图5 节点Von mise应力云图
在实体模型的有限元分析工作中,正确施加载荷及边界条件是取得合理结果的关键之一。理论上,这些局部构造承受的载荷是作用于对应杆件上的所有内力,所以将所对应杆件截面上的轴力、弯矩等当成载荷加到所取截面上或将该截面在整体分析中产生的变形当成约束条件施加应当是最精确的办法。在整体模型分析中,只是每个单元的两端节点上有解。ANSYS实体模型由于网格划分,每个截面往往要被分成很多份,因此面临着如何将整体模型的内力等效加在ANSYS实体模型上的问题,中国建筑设计研究院的设计人员在实体模型截面形心处建立节点,利用ANSYS的耦合功能将截面上节点自由度与截面形心节点自由度耦合起来,再将载荷加到形心节点上。这样可以模拟平截面假设。对于实体模型的杆件截取长度,一般不会超过杆件截面尺度的3~4倍,一个总的原则是要符合圣维南原理。即简化边界不能对关心区域的结果产生显著的影响。因此设计者可以根据需要灵活把握。图5为一个典型的柱顶复杂节点的应力云图。
3 二次开发技术
由于ANSYS软件只是一个结构分析软件,缺乏对行业规范的必要支持。为此中国建筑设计研究院结构技术开发部开发了ANSYS空间结构的专门设计模块—CAG DESIGN。CAG DESIGN是主要针对空间结构开发的。为了对开发的模块质量把关,成立了专门的开发小组。制订了软件开发的技术条件,规定了程序应遵循的标准和规范。与ANSYS的前后处理相对应,CAG DESIGN主要分为三部分,即前处理模块CAGPREP7,计算求解模块CAGSOLU和后处理模块CAGPOST。前处理模块CAGPREP7的主要功能是:设置CAG DESIGN的初始环境,ANSYS与AutoCAD的数据交换接口,常用截面的实常数计算模块。根据空间结构的特点,主要选取了常用的梁单元,杆单元和索单元。计算求解模块CAGSOLU的功能主要是定义单工况荷载,如恒荷载,雪荷载,风荷载,温度作用。这些荷载可以是单元荷载,也可以是节点荷载。为了与其他程序对比,预留了接口。在国家体育场的设计中,为了解决加载复杂的问题,设计人员先在MST中加载,然后在转换到ANSYS模型中。CAGSOLU根据工程的需要可以根据《建筑抗震设计规范》(GB50011-2001)采用振型分解反应谱法计算结构的地震响应。地震响应包括小震和中震。后处理模块CAGPOST主要用于工况组合和截面的计算,计算后的结果可以以图形的形式在ANSYS图形界面上显示各个杆件的应力分布。与此相配套开发了Excel接口文件,用来调整模型截面,对模型进行优化。
4 小结
ANSYS作为大型通用有限元软件,在国家体育场设计中得到了广泛的应用。此软件经过大量的测试,计算的精度和稳定性都有保证。用户可以直接通过ANSYS的开放系统,开发自己定制的模块,不必花费大量精力对开发平台进行维护。中国建筑设计研究院结构技术开发部正在为ANSYS软件配套开发空间结构领域的专用模块,为建筑设计提供有强有力的工具。









